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Abstract: Cellular functions result from intricate networks of molecular interactions, which involve not only
proteins and nucleic acids but also small chemical compounds. Here we present an efficient algorithm for
comparing two chemical structures of compounds, where the chemical structure is treated as a graph
consisting of atoms as nodes and covalent bonds as edges. On the basis of the concept of functional
groups, 68 atom types (node types) are defined for carbon, nitrogen, oxygen, and other atomic species
with different environments, which has enabled detection of biochemically meaningful features. Maximal
common subgraphs of two graphs can be found by searching for maximal cliques in the association graph,
and we have introduced heuristics to accelerate the clique finding and to detect optimal local matches
(simply connected common subgraphs). Our procedure was applied to the comparison and clustering of
9383 compounds, mostly metabolic compounds, in the KEGG/LIGAND database. The largest clusters of
similar compounds were related to carbohydrates, and the clusters corresponded well to the categorization
of pathways as represented by the KEGG pathway map numbers. When each pathway map was examined
in more detail, finer clusters could be identified corresponding to subpathways or pathway modules containing
continuous sets of reaction steps. Furthermore, it was found that the pathway modules identified by similar
compound structures sometimes overlap with the pathway modules identified by genomic contexts, namely,
by operon structures of enzyme genes.

Introduction

Whole genome sequencing has uncovered gene repertoires
for more than a hundred organisms, but it has also clarified the
needs for analyzing cellular functions as behaviors of a complex
system rather than simply as a collected body of molecular
functions.1 The system of our interest is an interaction network
of proteins, chemical compounds, and other components, which
are also interacting with dynamic environments. Thus, it is an
important problem to develop computational methods for
analyzing large interaction networks and to understand systemic
aspects of biology.2,3 Coupled with computational approaches,
significant efforts are undertaken for developing high-throughput
experimental technologies and producing large-scale data in
transcriptome,4 proteome,5 and metabolome analyses.6 Further-

more, knowledge on chemical compounds, reactions, and
pathways in cellular processes is accumulated in several
biological databases, notably in KEGG.7,8 In another attempt
the categorization of genes in the context of higher-level
functions is studied in Gene Ontology.9,10 These database
resources represent our current, probably very limited, knowl-
edge on molecular interaction networks in living cells and
organisms, but they can be used as reference knowledge from
which we should be able to explore unknown networks by
systematic analyses on large-scale experimental data.

The sequence-based methods for comparing genes and
proteins are well-established, and we already have a picture on
the “gene universe” in terms of the number of ortholog groups
as reported, for example, in COG.11 Similarly, established
methods for three-dimensional (3D) structure comparisons
provide a picture on the “protein universe” in terms of the(1) Kanehisa, M.; Bork, P. Bioinformatics in the post-sequence era.Nat. Genet.
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number of unique folds in SCOP12,13 or CATH.14 In contrast,
we have little knowledge on the “chemical universe” consisting
of chemical compounds and reactions in biological processes.
In fact, there have been few analyses on comparison and
classification of chemical compounds from a biological view-
point, despite the fact that small chemical compounds are as
important as biological macromolecules of proteins and nucleic
acids in understanding molecular interaction networks. The
chemical structure is a two-dimensional (2D) object, which can
be represented as a graph consisting of vertexes (atoms) and
edges (bonds). Thus, a straightforward method for comparing
two compounds is graph comparison, or detecting common
(isomorphic) subgraphs in two graphs.

In practice, however, the comparison of bit-represented
vectors, which is not a graph comparison, has been utilized as
a common method for searching similar compounds in a
chemical database.15 In this method the information about a
compound structure is reduced to a concatenation of several
hundreds of bits.16 A numerical vector method17,18 and a
fingerprint method19 have also been used as a mathematical
extension of the bit-comparison method. In contrast, comparing
two compounds directly as graph objects by using graph
theoretical methods is one of the major categories of applications
that need further developments and refinements. Especially, it
is critical to define an appropriate measure of compound
similarity for any graph comparison method to be biochemically
meaningful.20,21 The representation of compounds as graphs
seems more accurate and more effective to capture important
aspects of compound similarities22 rather than other representa-
tions of compounds such as SMILES.23,24 Recently, advances
have been made in the graph similarity search algorithms by
taking mathematical or chemical heuristics into account.25-27

These algorithms may be of practical use in the field of chemical

software systems. On the other hand, graph comparison methods
have a fundamental difficulty; the graph isomorphism problem
is NP-hard, and the computational time involved will increase
exponentially for larger biochemical compounds.

In this study we have developed a suite of new computational
tools, named SIMCOMP, to annotate an atomic environmental
property for each atom of a biochemical compound, to rapidly
identify common substructures between two compounds on the
basis of a graph comparison method, and to evaluate statistical
significance of similar substructures. Biochemical dialects of
compounds are sometimes useful to identify common properties
of compounds,28-30 and we first try to include biochemical
information into the representation of atoms, by distinguishing
the same atoms under different environments. This effectively
increases the number of vertex types and reduces the limitation
of 2D graph utilization. In addition, we introduce several
heuristics into the algorithm of similarity calculations. Thus,
we could decrease the exponential difficulties of graph com-
parison methods to the practical level that can be tolerated, while
holding high accuracies for graph similarities found.

Our method is applied to comparison and classification of
about 10 000 compounds, mostly metabolic compounds, in
KEGG. In particular, we perform a pathway-oriented clustering,
which reveals highly conserved modules of metabolic pathways,
consisting of successive reaction steps involving similar chemi-
cal compounds. Because the relationships between genomic
contexts (e.g., operon structures) and pathway modules are
already well identified by a number of studies and collected in
KEGG as ortholog group tables,31 it is natural for us to examine
any correspondence between chemical information and genomic
information, how well pathway modules identified by genomic
contexts correspond to those identified by chemical contexts.
This is a new type of network analysis, integrating both chemical
and genomic information for understanding molecular interac-
tion networks.

Materials and Methods

Chemical Compound Data.We have used chemical compound data
in the COMPOUND section of the KEGG/LIGAND database (version
20.0+ update 2002/03/26),32,33which is maintained in the ISIS/Oracle
database system. The total number of compounds with chemical
structures is 9383, roughly classified, according to the source, into 977
drug-related compounds, 2649 phytochemical compounds (secondary
metabolites in plants), and 5757 metabolites and other compounds
originating mostly from the KEGG metabolic pathways and/or the
enzyme nomenclature (EC number classification). We consider each
chemical structure as a labeled graph with atoms (or atom types) as its
vertexes and covalent bonds as its edges, excluding hydrogen atoms.
We do not consider any 3D features and do not discriminate chirality.
Some KEGG compounds are described in a generic form or a polymeric
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form, such as primary alcohol (R-OH) or starch ({C12H20O11}n), which
is often necessary to better represent metabolic pathways. We treat these
compounds by the following rules: (1) the R group is just taken as
“R” atom, that is, as if R were the 69th atom type (in addition to the
68 types described in the Results), and (2) the degree of polymerization
n is taken as 1, which means any polymeric structures degenerate to
corresponding monomers.

Definition of Graph Features. The problem of finding chemical
compound similarities is a graph comparison problem. Our approach
to finding common (isomorphic) subgraphs is essentially the same as
the traditional association graph method,34,35 which provides one of
the efficient solutions for the graph isomorphism problem. Here we
summarize the terminology for relevant graph features.

(1) Maximum Clique (MCL).A vertex-labeled graph consists of the
set of vertexesV and the set of edgesE, and is denoted byG(V,E). A
clique of graphG is defined as a complete subgraph inG. The
maximum clique in graphG is the clique ofG whose cardinality is not
smaller than that of any other clique inG. The maximum clique of
graphG is denoted as MCL(G).

(2) Maximal Common Subgraph (MCS) and Simply Connected
Common Subgraph (SCCS).A subgraph of graphG is a new graph
obtained fromG by deleting some edges and vertexes. A common
subgraph ofG1 andG2, CS(G1,G2), is a graph which is isomorphic to
a subgraph of bothG1 andG2. The maximal common subgraph ofG1

andG2, MCS(G1,G2), is the CS(G1,G2) whose cardinality is not smaller
than that of any other CS(G1,G2). A simply connected common
subgraph, SCCS(G1,G2), is a CS(G1,G2) within which each vertex is
connected to at least one other vertex. The MCS(G1,G2) must be a series
of SCCS(G1,G2)’s.

(3) Association Graph (AG).The graph product GP(V,E) of two
graphsG1(V1,E1) andG2(V2,E2) is a new graph defined on the vertex
set V ) V1 X V2 (a Cartesian product ofV1 and V2) and the set of
edgesE ) V X V. The association graph AG(V,E) defined here is one
of the graph products with the following adjacency conditions. Any
e(Vij,Vst) ∈ E is considered to be adjacent (1) ifV1i ∈ V1 is adjacent to
V1j ∈ V1 in the original graphG1 andV2s ∈ V2 is adjacent toV2t ∈ V2 in
the original graphsG2, or (2) if V1i is not adjacent toV1j andV2s is not
adjacent toV2t.

Clique Finding in the Association Graph. The association graph
AG made by the previous definition possesses all possibilities of vertex
matches between two initial graphsG1 andG2; namely, a clique in AG
corresponds to a common subgraph betweenG1 and G2. Thus, the
largest clique based on the number of matching vertexes becomes the
largest match of our interest. Consequently, the initial problem of
finding the MCS(G1,G2) can be reduced to the problem of finding the
MCL(AG). We use this association graph method only to obtain an
initial candidate set of maximally matching atoms (see Results).

Results

Atom Types with Different Environments. The structure
of a chemical compound is a collection of atoms (vertexes) that
are connected by covalent bonds (edges). In this study, any 3D
structural information of edges is not implemented; that is, we
use the graph representation containing only the 2D information
about vertexes and vertex connectivities in chemical compounds.
Although we discard 3D atomic coordinates, which of course
are not available for most compounds, we take into account
physicochemical environmental properties of atoms by assigning
well-detailed vertex labels. The same atoms in chemical
compounds may thus be distinguished by different labels,

because they represent different physicochemical properties in
accordance with their spatial and chemical situations. For
instance, a carboxyl carbon (R-(CdO)-OH) and an aldehyde
carbon (R-(CdO)-H) are very similar and have the same
atomic bond skeleton (X-(CdX)-X), which is one of the most
basic building blocks of larger molecules. However, these two
types of carbons are obviously different from the viewpoint of
organic reactions because of the difference in reactivities. It is
a well-known fact that an aldehyde carbon is more active on a
nucleophilic addition reaction, while a carboxyl carbon usually
has a nucleophilic substitution reaction activity. Therefore, it
is reasonable that we discriminate these two types of carbon
when comparing molecules.

Such atom-typing has commonly been utilized in chemo-
informatics. Here, we also introduce the vertex labeling function
p(V) into the graph representation of chemical compounds. The
labeling function should reflect the environmental features of
atoms and is based on the examination of the following: (1)
whether the atom is included in a ring structure, (2) what types
of bonds are connected to the atom, for example, single, double,
triple and aromatic bonds, and (3) what atoms are adjacent and,
if needed, what atoms are further adjacent to the adjacent atoms.

This labeling system is very simple and can be generated
computationally on the basis of the connection patterns of atoms
and the functional groups that they belong to and without any
other supervisor knowledge. Hence, each atom of all chemical
compounds in KEGG could be assigned new labels automati-
cally from their initial graphs stored in the MDL/MOL file
format. Figure 1 shows the list of new labels and corresponding
atomic environments as well as the numbers of instances found
in the KEGG compounds.

Thus we distinguish carbon into 23 types, nitrogen into 16
types, oxygen into 18 types, sulfur into 7 types, and phosphorus
into 2 types. The total number of new atom types is 68 including
two more types for halogens and the rest. In this new labeled
graph representation of chemical compounds, carboxyl carbon
(R-(CdO)-OH) and aldehyde carbon (R-(CdO)-H) are now
considered different, C6a and C4a, respectively. This represen-
tation is thus able to distinguish functional groups and should
be able to identify similarities and differences of biochemical
features of chemical compounds. For example, as illustrated in
Figure 2, although 3-hydroxypropanoate and 3-oxopropanoate
are very similar and have the same graph topology, the
difference between these two compounds can be detected by
referring to differently labeled vertexes indicating that 3-oxo-
propanoate has an aldehyde group.

Weighting of Atom Type Matches.The problem of finding
the maximal common subgraph (MCS) in two graphs is known
to be solved by finding the maximal clique (MCL) in the so-
called association graph consisting of the products of vertexes
from two graphs as its vertexes. In a conventional method, each
vertex of the association graph is weighted as only one or zero,
called all-or-none weighting here, depending on whether two
vertexes from the original graphs do or do not match. However,
this type of weighting scheme is too strict for our representation
where 68 atom types obviously share one of the seven categories
of atomic species. A simple weighting scheme adopted here,
called loose weighting, allows partial matches for the same atom
species with different environments, such as carboxyl carbon
and aldehyde carbon.

(34) Kuhl, F. S.; Crippen, G. M.; Friesen, D. K. A combinatorial algorithm for
calculating ligand binding.J. Comput. Chem.1984, 5, 24-34.

(35) Takahashi, Y.; Maeda, S.; Sasaki, S. Automated recognition of common
geometrical patterns among a variety of three-dimensional molecular
structures.Anal. Chim. Acta1987, 200, 363-377.

Integration of Chemical and Genomic Information A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 39, 2003 11855



The scheme is formulated as follows. Given two graphs
G1(V1,E1) andG2(V2,E2), the vertexVij of the association graph
AG(V,E) is induced from two vertexesV1i ∈ V1 and V2j ∈ V2

and is weighted as:

Here, the functiona(V) returns the atom species of vertexV,
and c is the constant value between 0 and 1. Of these three
statements, the first and the third ones are counterparts of the
all-or-none rule in the traditional association graph method. Here
we have introduced the second statement, which allows the
pairing of different atom types when the atom species is the
same. Through this newly weighted association graph AG, we
can still define the maximal common subgraph MCS(G1,G2) as
the maximal clique MCL(AG). In the current implementation
of our SIMCOMP program, we first obtain all cliques with the
maximum number of vertexes by the clique finding algorithm
shown below, and then calculate the sum of weights

for each clique to select the largest weighted one.

The parameterc is an adjustable parameter. Asc goes to 0,
the computational result approximates to that of the conventional
all-or-none weighting rule. Whenc turns to 1, it will become
the same as the result without the complicated vertex labels. In
this study, we chosec ) 0.5 as an intermediate degree of atom
matches. The distinction between the all-or-none type and the
loose type of weighting is illustrated in Figure 2. The SIMCOMP
program with the all-or-none weighting detects only the common
structure (1), but with the loose weighting ofc ) 0.5 it detects
the common structure (2) as well.

Improvements of the Clique Finding Algorithm. The clique
finding of a given graph is a well-studied problem and it is
known to be combinatorially explosive in nature. Our imple-
mentation of the clique finding is a modified version of the
Bron-Kerbosch algorithm.36 Since the association graph AG-
(V,E) is generated only for the matching vertexes in the initial
gaphs, the number of vertexes in AG is much larger under the
loosely weighted condition than the all-or-none condition, and
the calculation based on this algorithm does not finish within a
practical time for many compound pairs in our database. Thus,
we need to incorporate better heuristics into the calculation.

First, we simply stop the calculation of clique finding after a
reasonable number of recursion steps in a recursive implementa-

(36) Bron, C.; Kerbosch, J. Algorithm 457: Finding all cliques of an undirected
graph.Commun. ACM1973, 16, 575-577.

Figure 1. List of 68 atom types that distinguish environmental classes. The atom-type codes are shown for carbon (C) in diagram a, nitrogen (N) in b,
oxygen (O) in c, both sulfur (S) and phosphorus (P) in d, and the rest in e. In each diagram H is a hydrogen atom and R is an atomic group larger than a
simple hydrogen atom including a ring. In some cases, such as O6a, O7a, O7x, S3a, or S3x, atom-type codes are assigned to plural target atoms. The last
category e is miscellaneous containing any C, N, O, or S with no suitable class in a, b, c, or d. A halogen is labeled as X, and other atoms are reduced into
Z. The observed frequencies of each atom type in our dataset are also shown in parentheses.

w(Vij) ){1, if p(V1i) ) p(V2j),
c, if p(V1i) * p(V2j) anda(V1i) ) a(V2j),
0, otherwise

∑
V∈MCL(AG)

w(V)
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tion of the Bron-Kerbosch algorithm and obtain a candidate
set of MCLs (maximal cliques), that is, MCSs (maximal
common subgraphs) as well. Then we start to search better
common subgraphs, called quasi-MCSs, from the candidate set.
In this second optimization step we eliminate small SCCSs
(simply connected common subgraphs) whose cardinality is
smaller than a given threshold, and extend only other larger
SCCSs. The SCCSs with small cardinality are frequently found
as noises around the conserved structure of two compounds,
such as separate matches of single atoms. Mathematically those
separate matches should be considered to obtain the MCS, but
the quasi-MCS without considering them may be biochemically
meaningful. After the elimination of those small SCCSs, we
extend the other SCCSs one by one greedily until no more atom
pairs can be included. Finally we obtain the quasi-MCS(G1,G2).

The procedure outlined above thus contains heuristics sum-
marized below: (1) to suspend the clique finding procedure at
the number of recursion stepsRmax, at most, (2) to eliminate
any small SCCSs whose cardinality is lower thanSmin, and
(3) to extend the other SCCSs greedily while any candidate
exists.

Our two-step optimization procedure is controlled by the two
cutoff parameters,Rmax for termination of the usual clique
finding algorithm andSmin for consideration of the greedy search
around each of the SCCSs found. In this paper we chose
Rmax ) 15 000 andSmin ) 2, after several preliminary experi-
ments on computing chemical compound similarities in the
KEGG database.

The heuristics introduced here not only made the computation
more efficient but also made it possible to capture biochemically
meaningful features, as illustrated in Figure 3. When formyl-
kynurenine and formylanthranilate are compared by the rigorous
clique finding algorithm, the maximal common substructure is
identified as structurea. However, in our heuristic procedure
of discarding small SCCSs with size one from the solution after

15 000 steps (structureb) and searching for larger SCCSs, the
final result was structurec, which is less optimal thana or b
but is more appropriate from the biochemical standpoint. This
is because there exists an enzymatic reaction between these two
compounds (EC: 3.7.1.3) where formylkynurenine is divided
into formylanthranilate andL-alanine, and the common sub-
structurec does represent this reaction. In many other cases
that we examined, we obtained relatively reasonable solutions
with Smin ) 2 especially for closely related compound pairs.

Normalized Score for Compound Similarity. The maximal
common subgraph MCS(G1,G2) is obtained by maximizing the
number of matched atom types, which is a raw score that
depends on the sizes of the original graphsG1 and G2. We
introduce a normalized score, utilizing one of the most popular
measures, the Jaccard coefficient,37,38 also known as the
Tanimoto coefficient.39,40It is the ratio of the size of the common
substructure (AND graph) divided by the size of the nonredun-
dant set of all substructures (OR graph). The OR graph consists
of one isomorphic copy of the subgraph existing in both graphs
and all other subgraphs existing in either graph, and is defined
asG1 + G2 - MCS(G1,G2).

Thus, the Jaccard coefficient JC(G1,G2) that is the cardinality
of the common subgraph divided by the cardinality of the
nonredundant subgraph can be written as:

(37) Jaccard, P. The distribution of the flora of the alpine zone.New Phytol.
1912, 11, 37-50.

Figure 2. Conversion of atoms into atom types distinguishing environments.
(a) Initial graphs of chemical compounds obtained from KEGG/LIGAND;
in this case, 3-hydroxypropanoate and 3-oxopropanoate. (b) Conversion into
a more complicated graph whose vertexes are labeled by the proper atom
types listed in Figure 1. The common subgraphs that should be detected by
our method are also shown here. Under the all-or-none weighting condition
the common substructure (1) is detected with the normalized similarity score
of 4/(6 + 6 - 4) ) 0.5. Under the loose weighting condition the common
substructure (2) can also be identified, and the whole structures of two
compounds are found to have the same topology with the normalized
similarity score of 1.

Figure 3. Heuristics of maximizing simply connected common subgraphs.
(a) Rigorous clique-finding procedure detects this best solution, that is, the
maximal common subgraph (MCS) between formylkynurenine and for-
mylanthranilate. (b) Suboptimal solution, that is, a quasi-MCS after
calculating up to the given number of steps (Rmax ) 15 000). (c) The result
of eliminating small SCCSs (Smin ) 2) and maximizing the other larger
SCCSs. This solution is mathematically less optimal than either a or b, but
biochemically meaningful.

JC(G1,G2) ≡ |G1 ∩ G2|
|G1 ∪ G2|

)
|MCS(G1,G2)|

|G1 + G2 - MCS(G1,G2)|
)

|MCS(G1,G2)|
|G1| + |G2| - |MCS(G1,G2)|
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where the notation|X| is used for the cardinality of graphX.
Because we search for quasi-MCS(G1,G2), the Jaccard coef-
ficient is approximated by:

The normalized similarity score JC ranges from 0 to 1, where
0 represents the absence of any common substructure and 1
means that two compounds are identical.

Comparison of All Compound Pairs in KEGG. We
calculated the normalized similarity scores for all possible pairs
of chemical compound structures in the KEGG dataset using
the SIMCOMP program under the loose weighting condition.
The distribution of 44,015,653 similarity scores among 9383
compounds is shown in Figure 4. The statistical distribution
that best approximates this distribution is found to be a normal
distribution, also drawn in Figure 4. This probability density
function is formulated as:

Here, µ is the average of all similarity scores, andσ is
the standard deviation of this distribution. The probability
P(s > S) of observing by chance the scores that is greater than
S is given by:

and it is referred as theP-value. From this equation, we
estimated the threshold of the similarity score in order to best
discriminate biochemically meaningful compound pairs. For our
particular dataset, we choseP-value ) 0.01, or the level of
confidence of 99%; thus, the proper threshold isS ) 0.723.

Figure 4 also shows the distribution of similarity scores for
all possible KEGG compound pairs with the all-or-none
weighting, which requires perfect matching of 68 atom types.
Few common substructures were found for most compound pairs
with the all-or-none weighting as indicated by a skewed
distribution similar to the binomial distribution, in contrast to
the normal distribution in the loose weighting.

Clustering of All Compounds in KEGG. After calculating
similarity scores of all possible compound pairs in our dataset,
we performed the complete-linkage cluster analysis with the
threshold similarity score of 0.723 (the degree of confidence
99%). Consequently, the total number of clusters found was
3970, consisting of 1871 singletons and 2099 non-singletons,
and the maximum size cluster contained 64 compounds. As
shown in Figure 5, the size distribution exhibits the “small
world” nature41 approximately following the power-law distri-
bution.

By examining constituent members of each cluster in more
detail, we found that clusters with large numbers of metabolites
were often associated with specific compound families. The top
10 largest clusters are listed in Table 1, and for each of them a
representative structure is shown in Figure 6 together with the
common substructure. Obviously, many of the largest clusters

(38) Watson, G. A. An algorithm for the single facility location problem using
the Jaccard metric.SIAM J. Sci. Stat. Comput.1983, 4, 748-756.

(39) Willett, P.; Winterman, V.; Bawden, D. Implementation of nearest-neighbor
searching in an online chemical structure search system.J. Chem. Inf.
Comput. Sci.1986, 26, 36-41.

(40) Willett, P.; Barnard, J.; Downs, G. M. Chemical similarity searching.J.
Chem. Inf. Comput. Sci.1998, 38, 983-996.

(41) Barabasi, A. L.; Albert, R. Emergence of scaling in random networks.
Science1999, 286, 509-512.

Figure 4. Distribution of normalized similarity scores for all possible pairs of chemical compounds in KEGG. The thick line is the probability density
distribution with the loose weighting condition, and the thin line is that for the all-or-none weighting condition. Here the thick line can be fitted with a
normal distribution, drawn in a dashed line, whose statistical parameters areµ ) 0.338 andσ ) 0.150. According to this normal distributionP-value) 0.01
for the right tail corresponds to score) 0.723, as indicated in the figure.

JC(G1,G2) ≈ |qMCS(G1,G2)|
|G1| + |G2| - |qMCS(G1,G2)|

F(x) ) 1

σx2π
exp(-

(x - µ)2

2σ2 )

P(s > S) ) ∫S

∞
F(x)dx ) 1

σx2π
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∞
exp(-

(x - µ)2

2σ2 )dx
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consist of sugar-related compounds; especially the clusters 1,
2, and 10 have common skeletons of hexoses. As a matter of
fact, the clusters 1 and 2 become connected into a single cluster
at the similarity threshold) 0.6, and 1 and 2 and 10 are grouped
into one cluster at the threshold) 0.5. The cluster 4 is also a
group of hexose-related compounds, but it is separated from
others until the threshold is less than 0.4. The clusters 5 and 7
are related to pentoses, but they are distinct groups even the
threshold score is lowered to 0.4. These characteristics may arise
from the nature of the complete linkage analysis, that is any
pair within the cluster must have a similarity score above the
given threshold. In any event, we could identify chemically
distinct groups at the high-confident threshold) 0.723, which
are likely to represent biochemically meaningful groups as
summarized in Table 1.

We have also noticed that most of the top 10 largest clusters
are highly correlated with specific metabolic pathways (Table
1). Here, the correspondence between a cluster and a pathway
is defined by the number of compounds within a cluster that
can be assigned to a specific pathway map in KEGG. For

instance, all compounds included in the cluster 9 are associated
with the metabolic pathway of sterol biosynthesis, whose
accession number in KEGG is map00100. The cluster 6 is
strongly connected with phenylalanine (map00360) or tyrosine
(map00350) metabolism. Most of the other top ranking clusters
are correlated with carbohydrates that appear ubiquitously in
many metabolic pathways in KEGG, especially, map00040
(pentose and glucuronate interconversion), map00052 (galactose
metabolism), and map00053 (ascorbate and aldarate metabo-
lism). The total number of compounds that can be mapped to
KEGG metabolic pathways was 2294, roughly a quarter of 9383
compounds in our dataset.

Clustering of Compounds within KEGG Pathway Maps.
The cluster analysis of all 9383 compounds revealed the global
tendency of similar compounds appearing in the same KEGG
metabolic pathway maps. An obvious next question is whether
those similar compounds are also related to specific reaction
steps when each pathway map is examined in more detail. We
thus checked the connectivity of compounds along the reaction
steps by mapping similar compound clusters onto KEGG

Figure 5. Size distribution of similar compound clusters that are identified by the complete linkage analysis with the threshold similarity score of 0.723 (the
degree of confidence is 99%). In this log-log plot, the horizontal axis is the cluster size or the number of compounds belonging to the cluster, and the
vertical axis is the number of clusters with a given size. The dashed line is the regression line, indicating that the size distribution of clusters approximately
follows the power-law,P(k) ∝ k-γ, with γ ) 2.41.

Table 1. Top Ten Largest Clusters of Similar Chemical Compounds

KEGG pathways map numbersa

no. size common formula description of members C L N AA CC second AtR

1 64 C6O6 hexose, its uronic acid, glycoside 10, 30, 52 500
2 43 C6O5 ketohexose, aldohexose, aldarate 30,40, 51, 52, 53
3 38 C5O5P ribose and phosphoric acid group of nucleic acids 970
4 31 C6O8P phosphorylated hexose 51, 52 520
5 28 C5O5 ketopentose, hexose lactone 40,53
6 27 C9O containing a cinnamate skeleton 350,360 940
7 26 C5O4 aldopentose, pentoside 40 520
8 25 C10 containing a menthol skeleton 900
9 25 C27O containing a cholesterol skeleton 100
10 24 C8O6N N-acetylated hexosamine 530

a The pathway map numbers are simplified; for example, 40 stands for map00040 in KEGG. The most frequently observed pathways are shown in bold.
Abbreviations for the pathway categories are: C, carbohydrate metabolism; L, lipid metabolism; N, nucleotide metabolism; AA, amino acid metabolism;
CC, metabolism of complex carbohydrates; second, biosynthesis of secondary metabolites; and AtR, aminoacyl-tRNA synthesis.
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pathway maps. Although the above result of clustering all 9383
compounds could be used for this purpose, we also performed
the cluster analysis of 2294 compounds that were already known
to appear in the KEGG pathway maps. This pathway-oriented
clustering was carried out in the same way as above, the
complete-linkage clustering with the threshold score of 0.723.

The result of mapping compound clusters onto each KEGG
pathway is summarized in Table 2 for both types of cluster
analyses. There was a definite tendency that similar compound
clusters corresponded to localized regions of the pathway maps,
indicating that compounds of high structural similarities are also
likely to be linked with high connectivities on the reaction steps.
With the pathway-oriented clustering, most of the KEGG
metabolic pathway maps could be divided into several parts of
chemical compound clusters more plainly than the case of all
compounds. In addition, some of the metabolic pathways had
larger components of pathway clusters, and the correspondences
between compound clusters and pathway maps became clearer.

As an example, the result of analyzing the KEGG metabolic
pathway map for pentose and glucuronate interconversions
(map00040) is shown in Figure 7. Four compound clusters were
identified by the pathway-oriented clustering as indicated in
Figure 7a and the consensus structure of each compound cluster
is shown in Figure 7b. It is obvious that this map is largely
separated into two parts; one is the pentose-related region
(clusters B and D) and the other is the glucuronate-related region
(cluster A). Cluster C is located between B and D, for any
member of C is a phosphorylated product of B or D as shown
in Figure 7b. Here the consensus structure is the common
skeleton of atoms identified by the atom alignment in SIM-
COMP, namely, without considering atomic environmental
properties.

Correlation of Compound Clusters and Operon Struc-
tures. One of the main objectives of this study is to find, if

any, empirical relationships between chemical information and
genomic information in the metabolic pathways. The chemical
information is derived from the cluster analysis of chemical
compounds and the pathway-oriented clustering as described
above. The genomic information considered here is taken from
the KEGG ortholog group tables,31,42 which contain the
information about orthologous sets of enzyme genes that
constitute specific pathways and also about enzyme gene clusters
(possible operons) in selected genomes. The correlation is
assessed by projecting both chemical compound clusters and
enzyme gene clusters onto each KEGG metabolic pathway map
and enumerating the number of compounds in the intersection
of these two types of clusters. Thus, the chemical compounds
in the intersection would exhibit three significant features: high
structural similarity, connectivity or reactivity of compounds
along the pathways, and genomic association of enzymes
catalyzing reactions between those compounds.

The last two columns of Table 2 show the number and the
maximum size of intersection clusters that we obtained. The
enzyme gene clusters (operon structures) were correlated well
with the pathway-oriented compound clusters in almost all
KEGG pathway maps, but the intersection was usually small.
The largest intersection was found in map00040 for pentose
and glucuronate interconversions, which is illustrated in Figure
8. The region A is the cluster of similar compounds (glucu-
ronates) shown in Figure 7a. The region E is the cluster of
enzyme genes, which actually contain three operon-like struc-
tures in certain genomes. The first operon-like structure (such
as inYersinia pestis43) consisting of EC 4.2.1.7, EC 1.1.1.58,
and EC 5.3.1.12 and the second operon-like structure (such as
in Brucella melitensis44) consisting of EC 4.2.1.8, EC 1.1.1.57,

(42) Ogata, H.; Fujibuchi, W.; Goto, S.; Kanehisa, M. A heuristic graph
comparison algorithm and its application to detect functionally related
enzyme clusters.Nucleic Acids Res.2000, 28, 4021-4028.

Figure 6. Common structures of the top 10 largest clusters. For each cluster a most representative compound is shown with its name, and the common
structure is indicated in gray. The cluster size is shown in parentheses. The clusters 1, 2, 4, and 10 belong to the group of hexoses and derivatives, andtheir
common structures are very similar. In fact, the four representative chemical compounds in this figure have high similarity scores each other. Apparently,
the complete linkage method makes these clusters separated at the threshold score of 0.723, as well as the pentose-related clusters 5 and 7.
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and EC 5.3.1.12 are found within the compound cluster A, and
the third operon-like structure (such as inBacillus subtilis45)
consisting of EC 5.3.1.17, EC 1.1.1.125, EC 2.7.1.45, EC
4.1.2.14, and EC 4.1.3.16 partially overlaps with the compound
cluster A. Thus, the shaded area in Figure 8 represents a highly
conserved pathway module, which represents both chemical
similarity of compounds and genomic association of enzymes.
There were also similar but smaller intersections in map00040
where an enzyme gene cluster (such as inEscherichia coli46

andSalmonella47) was found to overlap compound clusters B
(pentoses) and C (phosphorylated products). All such relation-
ships between gene clusters and compound clusters in map00040
are listed in Table 3.

Discussion

Integration of Chemical and Genomic Information. The
correlation between the genomic association and the pathway
connectivity is already well-known; a set of enzyme genes
encoded in an operon often corresponds to a set of enzymes
catalyzing successive reaction steps in a specific metabolic

(43) Parkhill, J.; Wren, B. W.; Thomson, N. R.; Titball, R. W.; Holden, M. T.;
Prentice, M. B.; Sebaihia, M.; James, K. D.; Churcher, C.; Mungall, K. L.;
Baker, S.; Basham, D.; Bentley, S. D.; Brooks, K.; Cerdeno-Tarraga, A.
M.; Chillingworth, T.; Cronin, A.; Davies, R. M.; Davis, P.; Dougan, G.;
Feltwell, T.; Hamlin, N.; Holroyd, S.; Jagels, K.; Karlyshev, A. V.; Leather,
S.; Moule, S.; Oyston, P. C.; Quail, M.; Rutherford, K.; Simmonds, M.;
Skelton, J.; Stevens, K.; Whitehead, S.; Barrell, B. G. Genome sequence
of Yersinia pestis, the causative agent of plague.Nature2001, 413, 523-
527.

(44) DelVecchio, V. G.; Kapatral, V.; Redkar, R. J.; Patra, G.; Mujer, C.; Los,
T.; Ivanova, N.; Anderson, I.; Bhattacharyya, A.; Lykidis, A.; Reznik, G.;
Jablonski, L.; Larsen, N.; D’Souza, M.; Bernal, A.; Mazur, M.; Goltsman,
E.; Selkov, E.; Elzer, P. H.; Hagius, S.; O’Callaghan, D.; Letesson, J. J.;
Haselkorn, R.; Kyrpides, N.; Overbeek, R. The genome sequence of the
facultative intracellular pathogenBrucella melitensis. Proc. Natl. Acad. Sci.
U.S.A.2002, 99, 443-448.

(45) Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A. M.; Alloni, G.; Azevedo,
V.; Bertero, M. G.; Bessieres, P.; Bolotin, A.; Borchert, S.; Borriss, R.;
Boursier, L.; Brans, A.; Braun, M.; Brignell, S. C.; Bron, S.; Brouillet, S.;
Bruschi, C. V.; Caldwell, B.; Capuano, V.; Carter, N. M.; Choi, S. K.;
Codani, J. J.; Connerton, I. F.; Cummings, N. J.; Daniel, R. A.; Denizot,
F.; Devine, K. M.; Dusterhoft, A.; Ehrlich, S. D.; Emmerson, P. T.; Entian,
K. D.; Errington, J.; Fabret, C.; Ferrari, E.; Foulger, D.; Fritz, C.; Fujita,
M.; Fujita, Y.; Fuma, S.; Galizzi, A.; Galleron, N.; Ghim, S. Y.; Glaser,
P.; Goffeau, A.; Golightly, E. J.; Grandi, G.; Guiseppi, G.; Guy, B. J.;
Haga, K.; Haiech, J.; Harwood: C. R.; Henaut, A.; Hilbert, H.; Holsappel,
S.; Hosono, S.; Hullo, M. F.; Itaya, M.; Jones, L.; Joris, B.; Karamata, D.;
Kasahara, Y.; Klaerr-Blanchard, M.; Klein, C.; Kobayashi, Y.; Koetter,
P.; Koningstein, G.; Krogh, S.; Kumano, M.; Kurita, K.; Lapidus, A.;
Lardinois, S.; Lauber, J.; Lazarevic, V.; Lee, S. M.; Levine, A.; Liu, H.;
Masuda, S.; Mauel, C.; Medigue, C.; Medina, N.; Mellado, R. P.; Mizuno,
M.; Moestl, D.; Nakai, S.; Noback, M.; Noone, D.; O’Reilly, M.; Ogawa,
K.; Ogiwara, A.; Oudega, B.; Park, S. H.; Parro, V.; Pohl, T. M.; Poetetelle,
D.; Porwollik, S.; Prescott, A. M.; Presecan, E.; Pujic, P.; Purnelle, B.;
Rapoport, G.; Rey, M.; Reynolds, S.; Rieger, M.; Rivolta, C.; Rocha, E.;
Roche, B.; Rose, M.; Sadaie, Y.; Sato, T.; Scanlan, E.; Schleich, S.;
Schroeter, R.; Scoffone, F.; Sekiguchi, J.; Sekowska, A.; Seror, S. J.; Serror,
P.; Shin, B. S.; Soldo, B.; Sorokin, A.; Tacconi, E.; Takagi, T.; Takahashi,
H.; Takemaru, K.; Takeuchi, M.; Tamakoshi, A.; Tanaka, T.; Terpstra, P.;
Tognoni, A.; Tosato, V.; Uchiyama, S.; Vandenbol, M.; Vannier, F.;
Vassarotti, A.; Viari, A.; Wambutt, R.; Wedler, E.; Wedler, H.; Weitzeneg-
ger, T.; Winters, P.; Wipat, A.; Yamamoto, H.; Yamane, K.; Yasumoto,
K.; Yata, K.; Yoshida, K.; Yoshikawa, H. F.; Zumstein, E.; Yoshikawa,
H.; Danchin, A. The complete genome sequence of the gram-positive
bacteriumBacillus subtilis. Nature1997, 390, 249-256.

(46) Blattner, F. R.; Plunkett, G., 3rd; Bloch, C. A.; Perna, N. T.; Burland, V.;
Riley, M.; Collado-Vides, J.; Glasner, J. D.; Rode, C. K.; Mayhew, G. F.;
Gregor, J.; Davis, N. W.; Kirkpatrick, H. A.; Goeden, M. A.; Rose, D. J.;
Mau, B.; Shao, Y. The complete genome sequence ofEscherichia coliK-12.
Science1997, 277, 1453-1474.

(47) Parkhill, J.; Dougan, G.; James, K. D.; Thomson, N. R.; Pickard, D.; Wain,
J.; Churcher, C.; Mungall, K. L.; Bentley, S. D.; Holden, M. T.; Sebaihia,
M.; Baker, S.; Basham, D.; Brooks, K.; Chillingworth, T.; Connerton, P.;
Cronin, A.; Davis, P.; Davies, R. M.; Dowd, L.; White, N.; Farrar, J.;
Feltwell, T.; Hamlin, N.; Haque, A.; Hien, T. T.; Holroyd, S.; Jagels, K.;
Krogh, A.; Larsen, T. S.; Leather, S.; Moule, S.; O’Gaora, P.; Parry, C.;
Quail, M.; Rutherford, K.; Simmonds, M.; Skelton, J.; Stevens, K.;
Whitehead, S.; Barrell, B. G. Complete genome sequence of a multiple
drug resistantSalmonella entericaserovar Typhi CT18.Nature2001, 413,
848-852.

Table 2. Numbers of Compound Clusters and Enzyme Gene
Clusters Found

total all compounds by pathway by EC
path-
way CPD EC Num1 Num2 Max Num1 Num2 Max NumE MaxC

C

map00010 32 12 20 10 3 16 9 5 6 3
map00020 22 11 15 5 4 13 5 4 3 4
map00030 30 13 15 7 5 12 6 7 5 4
map00040 50 21 20 10 8 19 4 16 4 9
map00051 50 17 22 15 5 24 9 7 4 3
map00052 41 14 26 7 7 22 8 11 5 6
map00053 31 4 11 7 10 13 9 5 1 4
map00620 28 4 17 5 5 17 3 8 0 -
map00630 43 6 24 11 4 25 8 7 1 3
map00640 36 9 26 9 3 25 7 5 2 2
map00650 40 5 23 9 5 19 9 7 1 5

E

map00190 12 7 10 2 2 10 2 2 2 2
map00680 26 3 21 4 2 20 5 2 2 2
map00910 25 5 17 6 3 20 4 2 1 2
map00920 59 6 44 6 3 49 3 2 1 2

L

map00061 36 8 10 4 7 14 6 5 6 5
map00062 30 7 16 9 3 12 8 5 7 5
map00071 51 7 26 13 3 21 9 8 5 8
map00100 66 6 31 13 7 50 9 3 1 3

N
map00230 88 21 45 18 8 56 18 9 3 5
map00240 59 24 31 13 6 37 12 4 8 4
map00520 33 7 12 7 10 14 5 8 3 5

AA

map00251 28 10 23 4 3 22 5 3 1 2
map00252 27 6 20 6 3 21 4 4 1 3
map00260 53 17 36 13 4 34 14 5 6 3
map00271 20 2 14 4 3 13 4 4 1 2
map00272 23 2 14 4 4 17 4 3 0 -
map00280 36 7 20 7 4 19 7 6 5 4
map00290 23 10 13 6 5 17 3 4 3 4
map00300 33 12 20 9 3 16 8 5 4 2
map00330 70 7 47 14 5 50 8 11 1 3
map00340 45 13 26 10 4 27 11 4 5 3
map00350 82 6 35 19 11 37 18 6 2 3
map00360 31 9 17 7 9 19 6 4 1 2
map00400 26 16 20 5 3 17 3 5 3 4
map00220 33 16 28 5 2 28 4 3 1 2

oAA map00410 30 5 23 5 4 21 5 4 3 2

CC

map00500 53 12 30 9 8 24 12 7 5 4
map00530 31 3 17 7 5 11 7 7 1 3
map00540 16 8 15 0 1 15 0 1 0 -
map00550 37 7 27 6 4 29 5 3 1 2

CL map00561 70 5 43 16 5 49 13 4 1 2

CoV

map00730 15 4 11 2 4 9 3 4 1 2
map00740 19 6 15 3 3 13 5 3 3 3
map00760 23 2 15 7 3 10 7 4 0 -
map00770 26 4 16 6 4 16 6 4 1 2
map00780 11 5 8 2 2 8 2 2 2 2
map00790 44 12 25 9 6 26 6 5 5 5
map00670 9 2 5 3 3 4 1 6 1 2
map00860 79 17 42 13 5 50 10 6 5 4
map00130 41 6 23 11 5 25 9 4 1 2

av 37.7 8.8 22.2 7.9 4.7 22.7 6.8 5.2 2.6 3.2

a The table shows the result of three types of analyses: the clustering of
all compounds (all compounds), the pathway-oriented clustering (by
pathway), and the matching of enzyme gene clusters and compound clusters
(by EC), as well as the total number of compounds (CPD) and the total
number of enzymes (EC) that are found in operons in certain genomes in
the KEGG ortholog group tables. Num1 is the total number of clusters found,
Num2 is the total number of clusters excluding singletons, Max is the
number of members in the largest cluster, NumE is the number of enzyme
gene clusters mapped onto pathways and containing at least one orthlog
enzyme, and MaxC is the maximum number of chemical compounds in
the intersection of the similar compound cluster and the enzyme gene cluster.
Abbreviations for the pathway classes are: C, carbohydrate metabolism;
E, energy metabolism; L, lipid metabolism; N, nucleotide metabolism; AA,
amino acid metabolism; oAA, metabolism of other amino acids; CC,
metabolism of complex carbohydrates; CL, metabolism of complex lipids;
and CoV, metabolism of cofactors and vitamins.
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pathway. Here we have shown that the correlation exists
between the structural similarity and the pathway connectivity
of chemical compounds, and furthermore that the genomic/
pathway correlation of enzymes and the chemical/pathway
correlation of compounds do sometimes overlap. These two
observations are best illustrated in the KEGG pathway
map for pentose and glucuronate interconversions (http://
www.genome.ad.jp/kegg/pathway/map/map00040.html).

First, this pathway map could be divided into two large
clusters A and B (Figure 7) according to the structural similarity
of chemical compounds. The difference of these two clusters
is characterized by the difference of the number of carbon atoms;
A is the glucuronate-related group and B is associated with

pentoses. In fact, enzymatic reactions corresponding to the
connector between two sub-pathways are lyases acting on
carbons, such as a decarboxylase for reducing or raising the
number of carbon atoms. Thus, we could identify biochemically
meaningful clusters simply by comparison of chemical struc-
tures.

Second, there are at least six operon-like structures for the
enzyme genes according to the KEGG ortholog group table that
summarizes genomic contexts of completely sequenced genomes
(see http://www.genome.ad.jp/kegg/ortholog/tab00040.html and
also http://www.genome.ad.jp/kegg/pathway/ot/ot00040.html).
Three of them were found to be highly correlated with cluster
A (Figure 8 and Table 3). To summarize our observations,

Figure 7. An example of similar compound clusters mapped onto a specific pathway. a is the result of the pathway-oriented clustering for the metabolic
pathway of pentose and glucuronate interconversions, whose accession number is map00040 in the KEGG/PATHWAY database. After clustering 2294
metabolites that appear on any of the KEGG pathway maps, non-singleton clusters were superimposed on each of the pathway maps. Here, chemical
compounds included in the same shaded region exhibit high structural similarities and high connectivities along the pathway in map00040. There are four
major clusters of such chemical compounds in this pathway map:A, B, C, andD whose schematic representations of common components are drawn
in b.
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chemical association may indicate pathway association, which
in turn may indicate genomic association, and vice versa.

The KEGG metabolic pathway maps mostly represent
intermediary metabolism, a core portion of the metabolic
network that is shared and conserved in many different
organisms. Among those maps, map00040 contained the largest
intersection of chemical/pathway and genomic/pathway cor-
relations. In other words, the intersection was smaller in the
other KEGG maps. However, we expect to observe more
examples of the three-way correlation of chemical/pathway/
genomic clusters in secondary metabolism where environmental
factors have more direct influences on genomic contents.
Knowledge on chemical compounds can be utilized for gene
annotations and pathway reconstructions in secondary metabo-
lism where we have less knowledge on enzymes and more
knowledge on chemical compounds. For example, special
biosynthetic/biodegradation pathways in bacteria or special
biosynthetic pathways in plants may be uncovered by analyzing
structural similarities of chemical compounds and searching for
clusters of possible enzyme genes in the genome.

The tendency that structurally similar compounds are closely
positioned on the pathway can be confirmed by the distribution
of compound similarity scores along the KEGG pathways
(Figure 9). The average similarity score of compound pairs
decreases as the distance of those pairs along the pathway

increases, but there is a short-range correlation of similarity
scores and pathway distances. This may reflect the nature of
the metabolic pathways where each metabolite is modified little
by little, thus forming clusters of similar compounds on the
pathway maps.

Classification of Atomic Environments. In this study,
chemical compounds were treated as 2D graph objects consisting
of atoms (nodes) and atomic bonds (edges), namely, without
considering 3D structures. However, to incorporate reactivity
and other chemical properties that depend on three-dimensional
aspects, compounds were viewed as consisting of functional
groups, and the same atoms with different environments were
distinguished accordingly. We took into account the group-
contribution methods for estimating standard Gibbs energies of
formation of biochemical compounds28-30 when we defined the
total of 68 atom types (Figure 1). The conversion from the MDL/
MOL format to the 68-atom-type representation was done
computationally30 for all the KEGG compounds. Obviously, this
is not the only way to classify atom types. In fact, we first
defined about 90 atom types with finer classification of ring
structures, but then the numbers of instances in the KEGG
compound database were too small for some types. With the
current classification we obtained reasonable results for com-
parison and clustering of KEGG compounds and for identifica-
tion of common substructures. The usefulness of our classifi-
cation should further be evaluated by different types of analyses
(see below).

The atom type representation contains the information about
not only the atom species but also neighbor atoms and bond
patterns. Thus, it partially incorporates three-dimensional aspects
of compounds. Although the current classification is not
sufficient for distinguishing, for example, chilarity of com-
pounds, such an additional feature may be included in a finer
classification of atom types. Again, the validity of the finer
classification should be examined by the usefulness of bio-
chemical features detected. As for the atom types that are
categorized into undefined classes in Figure 1e, they come from
inorganic molecules or they have unusual bond structures such
as RdCdR. The numbers of instances were too small to warrant
consideration of separately defined environmental information.

Figure 8. Example of the correlation between chemical information and genomic information. The area designated by A corresponds to the cluster of
similar compounds shown in Figure 7. The area designated by E corresponds to the cluster of genomic associations where genes coding for the enzymes are
closely located on selected genomes according to the KEGG ortholog group table. Thus, the shaded area is the overlap of chemical and genomic clusters.

Table 3. Overlap of Similar Compound Clusters and Enzyme
Gene Clusters in the KEGG Pathway map00040

compound
clustersa enzyme gene clusters (possible operons)

A 4.2.1.7, 1.1.1.58, 5.3.1.12
A 4.2.1.8, 1.1.1.57, 5.3.1.12
A 5.3.1.17, 1.1.1.125, (2.7.1.45), (4.1.2.14), (4.1.3.16)
B, C 5.3.1.4, (2.7.1.16), 5.1.3.4, (2.7.1.53), (5.-.-.-), (4.1.2.-)
B 5.3.1.5, (2.7.1.17)
C, D 1.1.1.56, (2.7.1.47)

a Clusters of similar compounds A, B, C, and D correspond to those
shown in Figure 7, and clusters of enzyme genes are taken from the KEGG
ortholog group table. Each set of EC numbers in the same row represents
a possible operon structure whose products are also adjacent on the metabolic
pathway. The EC numbers in parentheses were outside of the overlap regions
(see Figure 8).
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Similarity Measure for Compound Comparison. When
comparing two chemical compounds, we used the three-value
weighting scheme: 1 for a perfect match of atom types, 0.5 for
a partial match of the same atomic species with different atom
types, and 0 for a mismatch of atomic species. In principle, it
should be possible to define a score matrix or a “mutation
matrix” for all pairs of 68 atom types. For example, the scoring
may be based on the 3D structural similarity of compounds.
Alternatively, the scoring may be based on the reactivity
between compounds or the closeness in terms of the chemical
reaction steps, especially those catalyzed by enzymes. An
appropriate measure of chemical reactivity should be useful not
only for assessing closeness of compounds in biochemical
pathways, but also for generating all possible compounds that
can be converted from a given compound and predicting reaction
pathways. Toward this end, we are experimenting a simple
extension of the current three-value weighting scheme by
distinguishing the matches of ring structures and chain struc-
tures. The classification of 68 atom types may also have to be
reexamined from this perspective.

In some cases of the atom alignments generated by the
SIMCOMP program, certain atoms that should be aligned were
not included in the common substructure. First of all, when the
relationship between two compounds was very distant, the
conserved region was too small and the program misidentified
the common substructure. Second, the association graph method
was sometimes not effective, because the maximal clique found
was not necessarily the best match but the best set of matches
in the biochemical sense. These problems should be alleviated
by introducing more appropriate weighting schemes. In the
present analysis, however, the effect of such computational
errors is negligible because our result of comparing chemical
similarity with pathway and genomic information is based only
on high scoring pairs.

Common Subgraphs and Cliques.The general problem of
finding the maximal common subgraph of two graphs or finding
the maximal clique is known to be NP-hard. However, our
particular problem of comparing two chemical structures is not
really NP-hard, because there is a clear limit for the number of
edges at each node, i.e., the maximum of four for a carbon atom.
The association graph method that we used is a general method
for finding common subgraphs and we did not directly take into
account this special graph structure. Although it may be feasible
to develop a drastically different algorithm, the heuristics
introduced in the traditional association graph method was
sufficiently effective to identify biochemical features. We
discontinued the clique finding procedure at a given number of
steps and then looked for a better solution for each of the
connected components (SCCSs) larger than a given size. Thus,
these heuristics reduced the execution time and identified local
matches, which we hoped were likely to be biochemically
meaningful substructures.

To examine if this is in fact the case, we performed a
comparison of the exact (optimal) solution and the heuristic
(suboptimal) solution. Here a “virtually” exact solution was
obtained by setting the maximum number of recursion steps
Rmax at a sufficiently large value (one million to 10 million).
The heuristic solution was obtained as described; withRmax )
15 000 and by searching for optimal SCCSs. We prepared two
data sets of compound pairs: one randomly selected from the
entire database of 9383 compounds, and the other taken from
the neighboring pairs along the KEGG metabolic pathways,
namely those having substrate-product relations in enzymatic
reactions. As shown in Table 4, the performance of our heuristics
was measured by the ratiomh/me, the number of matched atoms
mh in the heuristic solution divided by the number of matched
atomsme in the exact solution. The result indicates that although
the heuristic method may fail to detect exact solutions in about

Figure 9. Average similarity score (thick line) and the standard deviation (dashed lines) are plotted against the distance for pairs of chemical compounds
along the KEGG pathway. The distance is measured by the length of the shortest path along the pathway, which varies from 0 to 24. Here, the distance 0
means self-similarity, that is, the score is expected to be exactly 1. The average length of shortest paths was around 9 for all pairs along the pathways. The
average similarity scoreµ and the standard deviationσ for all KEGG compounds (Figure 4) are also shown by the three horizontal lines corresponding to
µ+σ, µ andµ-σ.
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20% of randomly selected compound structure comparisons, it
becomes more successful, with the missing rate of less than
10%, for the comparison of biochemically related compounds.
By considering the 100 times faster computation time in Table
4, our heuristic method should be sufficient for detecting
biochemically meaningful features.

However, we also noticed that an improvement was desirable
for the choice of threshold parameters. We used the same
number of steps to suspend the clique finding and the same
cutoff to eliminate small SCCSs for all calculations. Because
the sizes of the search space and the candidate set of quasi-
MCSs are dependent on the compounds to be compared, it
would be more effective to use proper parameters for each
calculation. To estimate such parameter sets, we need to learn
more about statistics of graph similarities and investigate
biochemical results obtained with different parameters.

Availability. Each program in the SIMCOMP package is
written in C language or Perl script language and intended to

work well on most standard UNIX operating systems. All source
codes are available from our web site http://web.kuicr.kyoto-
u.ac.jp/simcomp/. One can find hardware and software require-
ments and detailed instructions for installation of the package.
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Table 4. Comparison of the Heuristic Algorithm with the Exact
Algorithm

ratioa of matching, mh/me random pairs pairs along pathways

equal to 1.0 157 185
equal to 0.8- less than 1.0 37 12
less than 0.8 6 3

a Here,mh is the size of atom matching by our heuristic algorithm, and
me is that by the exact algorithm. Two data sets, each containing 200
compound pairs, are generated from the entire database (random pairs) and
from the neighboring pairs along the metabolic pathways (pairs along
pathways).
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